A characterization of Gaussian measures on locally compact Abelian groups
Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 759-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi$ and $\eta$ be independent random variables having equal variance. In order that $\xi+\eta$ and $\xi-\eta$ be independent, it is necessary and sufficient that $\xi$ and $\eta$ have normal distributions. This result of Bernshtein [1] is carried over in [7] to the case when $\xi$ and $\eta$ take values in a locally compact Abelian group. In the present note, a characterization of Gaussian measures on locally compact Abelian groups is given in which in place of $\xi+\eta$ and $\xi-\eta$, functions of $\xi$ and $\eta$ are considered which satisfy the associativity equation.
@article{MZM_1977_22_5_a13,
     author = {B. L. S. Prakasa Rao},
     title = {A characterization of {Gaussian} measures on locally compact {Abelian} groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {759--762},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a13/}
}
TY  - JOUR
AU  - B. L. S. Prakasa Rao
TI  - A characterization of Gaussian measures on locally compact Abelian groups
JO  - Matematičeskie zametki
PY  - 1977
SP  - 759
EP  - 762
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a13/
LA  - ru
ID  - MZM_1977_22_5_a13
ER  - 
%0 Journal Article
%A B. L. S. Prakasa Rao
%T A characterization of Gaussian measures on locally compact Abelian groups
%J Matematičeskie zametki
%D 1977
%P 759-762
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a13/
%G ru
%F MZM_1977_22_5_a13
B. L. S. Prakasa Rao. A characterization of Gaussian measures on locally compact Abelian groups. Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 759-762. http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a13/