Inequalities for the distribution of a~sum of functions of independent random variables
Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 745-758.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi=\sum_{i_1,\dots,i_r=1}^nf_{i_1,\dots,i_r=1}(\zeta_{i_1,\dots,i_r=1})$ where $\zeta_1,\dots,\zeta_n$ are independent random variables and the $f_{i_1,\dots,i_r=1}$ are functions (e.g., taking the values 0 and 1). For cases when “almost all” the summands forming $\xi$ are equal to 0 with a probability close to 1, estimates from above and below are obtained for the quantity $\mathsf P\{\xi=0\}$, as well as upper estimates for the distance in variation between the distribution $\xi$, and the distribution of the “approximating” sum of independent random variables.
@article{MZM_1977_22_5_a12,
     author = {A. M. Zubkov},
     title = {Inequalities for the distribution of a~sum of functions of independent random variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {745--758},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a12/}
}
TY  - JOUR
AU  - A. M. Zubkov
TI  - Inequalities for the distribution of a~sum of functions of independent random variables
JO  - Matematičeskie zametki
PY  - 1977
SP  - 745
EP  - 758
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a12/
LA  - ru
ID  - MZM_1977_22_5_a12
ER  - 
%0 Journal Article
%A A. M. Zubkov
%T Inequalities for the distribution of a~sum of functions of independent random variables
%J Matematičeskie zametki
%D 1977
%P 745-758
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a12/
%G ru
%F MZM_1977_22_5_a12
A. M. Zubkov. Inequalities for the distribution of a~sum of functions of independent random variables. Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 745-758. http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a12/