Higher derivatives of mappings of locally convex spaces
Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 729-744.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish sufficient conditions for $n$-fold bounded differentiability ("$b$-differentiability") of mappings of locally convex spaces and sufficient conditions for $n$-fold Hyers-Lang differentiability ("$HL$-differentiability") of mappings of pseudotopological linear spaces. We describe a class of locally convex spaces on which there exist everywhere infinitely $b$-differentiable real functions which are not everywhere continuous (and so are not everywhere $HL$-differentiable). Our results show, in particular, that for a wide class of locally convex spaces a significant number of the known definitions of $C^\infty$-mappings fall into two classes of equivalent definitions.
@article{MZM_1977_22_5_a11,
     author = {O. G. Smolyanov},
     title = {Higher derivatives of mappings of locally convex spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {729--744},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a11/}
}
TY  - JOUR
AU  - O. G. Smolyanov
TI  - Higher derivatives of mappings of locally convex spaces
JO  - Matematičeskie zametki
PY  - 1977
SP  - 729
EP  - 744
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a11/
LA  - ru
ID  - MZM_1977_22_5_a11
ER  - 
%0 Journal Article
%A O. G. Smolyanov
%T Higher derivatives of mappings of locally convex spaces
%J Matematičeskie zametki
%D 1977
%P 729-744
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a11/
%G ru
%F MZM_1977_22_5_a11
O. G. Smolyanov. Higher derivatives of mappings of locally convex spaces. Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 729-744. http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a11/