Order of growth of the degrees of a polynomial basis of a space of continuous functions
Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 711-728 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem under consideration is the one posed independently by C. Foias and I. Singer and by P. L. Ul'yanov concerning the minimal growth of the degrees $\nu_n$ of a polynomial basis $\{t_n(x)\}_0^\infty$ of a space of continuous functions. It is shown that there exist an absolute constant $C$ and a polynomial basis $\{t_n(x)\}_0^\infty$ such that $$ \nu_n\le C(n\ln^+\ln(n+1)+1),\quad n=0,1,2,\dots $$ The feasibility of the method employed is also considered.
@article{MZM_1977_22_5_a10,
     author = {V. N. Temlyakov},
     title = {Order of growth of the degrees of a~polynomial basis of a~space of continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {711--728},
     year = {1977},
     volume = {22},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a10/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Order of growth of the degrees of a polynomial basis of a space of continuous functions
JO  - Matematičeskie zametki
PY  - 1977
SP  - 711
EP  - 728
VL  - 22
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a10/
LA  - ru
ID  - MZM_1977_22_5_a10
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Order of growth of the degrees of a polynomial basis of a space of continuous functions
%J Matematičeskie zametki
%D 1977
%P 711-728
%V 22
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a10/
%G ru
%F MZM_1977_22_5_a10
V. N. Temlyakov. Order of growth of the degrees of a polynomial basis of a space of continuous functions. Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 711-728. http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a10/