Singular generalized functions of an infinite-dimensional argument
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 543-551
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that every generalized function (on a Hilbert space), concentrated on a surface of infinite codimension, is equal to zero.
@article{MZM_1977_22_4_a9,
author = {A. V. Uglanov},
title = {Singular generalized functions of an infinite-dimensional argument},
journal = {Matemati\v{c}eskie zametki},
pages = {543--551},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a9/}
}
A. V. Uglanov. Singular generalized functions of an infinite-dimensional argument. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 543-551. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a9/