Absence of localization of the Laplace series on the sphere for functions of the Nikol'skii class $H_1^1(S^2)$
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 517-523
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article a function is constructed belonging to the class $H_1^1(S^2)$ and having a singularity at a definite point on the sphere, as a consequence of which localization fails for the Laplace series of this function at the diametrically opposite point. The constructed example shows that the sufficient condition of localization in $H_p^a$ of the spectral expansions in the class of all elliptic differential operators on an $n$-dimensional paracompact manifold cannot be improved (see [1]).
@article{MZM_1977_22_4_a6,
author = {A. K. Pulatov},
title = {Absence of localization of the {Laplace} series on the sphere for functions of the {Nikol'skii} class $H_1^1(S^2)$},
journal = {Matemati\v{c}eskie zametki},
pages = {517--523},
year = {1977},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a6/}
}
TY - JOUR AU - A. K. Pulatov TI - Absence of localization of the Laplace series on the sphere for functions of the Nikol'skii class $H_1^1(S^2)$ JO - Matematičeskie zametki PY - 1977 SP - 517 EP - 523 VL - 22 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a6/ LA - ru ID - MZM_1977_22_4_a6 ER -
A. K. Pulatov. Absence of localization of the Laplace series on the sphere for functions of the Nikol'skii class $H_1^1(S^2)$. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 517-523. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a6/