Absence of localization of the Laplace series on the sphere for functions of the Nikol'skii class $H_1^1(S^2)$
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 517-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a function is constructed belonging to the class $H_1^1(S^2)$ and having a singularity at a definite point on the sphere, as a consequence of which localization fails for the Laplace series of this function at the diametrically opposite point. The constructed example shows that the sufficient condition of localization in $H_p^a$ of the spectral expansions in the class of all elliptic differential operators on an $n$-dimensional paracompact manifold cannot be improved (see [1]).
@article{MZM_1977_22_4_a6,
     author = {A. K. Pulatov},
     title = {Absence of localization of the {Laplace} series on the sphere for functions of the {Nikol'skii} class $H_1^1(S^2)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--523},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a6/}
}
TY  - JOUR
AU  - A. K. Pulatov
TI  - Absence of localization of the Laplace series on the sphere for functions of the Nikol'skii class $H_1^1(S^2)$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 517
EP  - 523
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a6/
LA  - ru
ID  - MZM_1977_22_4_a6
ER  - 
%0 Journal Article
%A A. K. Pulatov
%T Absence of localization of the Laplace series on the sphere for functions of the Nikol'skii class $H_1^1(S^2)$
%J Matematičeskie zametki
%D 1977
%P 517-523
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a6/
%G ru
%F MZM_1977_22_4_a6
A. K. Pulatov. Absence of localization of the Laplace series on the sphere for functions of the Nikol'skii class $H_1^1(S^2)$. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 517-523. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a6/