A family of maximal subalgebras of R. Robinson's algebra
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 511-516
Cet article a éte moissonné depuis la source Math-Net.Ru
All maximal sub algebras of the algebra of primitive recursive functions $\langle\Phi;+,*,i\rangle$, whose basic sets contain the set $$ A+\{f:f\equiv0\vee(\forall\,x)(x>0\Rightarrow f(x)>0)\} $$ are described. It is shown that they are continuum in number.
@article{MZM_1977_22_4_a5,
author = {A. N. Degtev},
title = {A~family of maximal subalgebras of {R.~Robinson's} algebra},
journal = {Matemati\v{c}eskie zametki},
pages = {511--516},
year = {1977},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a5/}
}
A. N. Degtev. A family of maximal subalgebras of R. Robinson's algebra. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 511-516. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a5/