Decomposition of weakly aging distributions
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 571-574.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of weakly aging distribution functions is introduced and a number of properties of this class are derived. It is proved in particular that a random variable $\xi$, having a weakly aging distribution function, can be written as a sum of two independent random variables, one of which has exponential distribution with a parameter equal to the modulus of the singular point of $Me^{-\delta\xi}$ nearest the coordinate origin.
@article{MZM_1977_22_4_a12,
     author = {O. P. Vinogradov},
     title = {Decomposition of weakly aging distributions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {571--574},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a12/}
}
TY  - JOUR
AU  - O. P. Vinogradov
TI  - Decomposition of weakly aging distributions
JO  - Matematičeskie zametki
PY  - 1977
SP  - 571
EP  - 574
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a12/
LA  - ru
ID  - MZM_1977_22_4_a12
ER  - 
%0 Journal Article
%A O. P. Vinogradov
%T Decomposition of weakly aging distributions
%J Matematičeskie zametki
%D 1977
%P 571-574
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a12/
%G ru
%F MZM_1977_22_4_a12
O. P. Vinogradov. Decomposition of weakly aging distributions. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 571-574. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a12/