Decomposition of weakly aging distributions
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 571-574
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of weakly aging distribution functions is introduced and a number of properties of this class are derived. It is proved in particular that a random variable $\xi$, having a weakly aging distribution function, can be written as a sum of two independent random variables, one of which has exponential distribution with a parameter equal to the modulus of the singular point of $Me^{-\delta\xi}$ nearest the coordinate origin.
@article{MZM_1977_22_4_a12,
author = {O. P. Vinogradov},
title = {Decomposition of weakly aging distributions},
journal = {Matemati\v{c}eskie zametki},
pages = {571--574},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a12/}
}
O. P. Vinogradov. Decomposition of weakly aging distributions. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 571-574. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a12/