A~class of submanifolds in $V_c^n$ with parallel $p$-dimensional subbundle of the normal bundle
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 477-483.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local structure of a submanifold $V^m$ is studied for which the focal surface $F$ of a subbundle $N^p$ has $s$ distinct components with multiplicities $p_1\dots,p_n$ ($p_1+\dots+p_s=m$), and the focal surface $\Phi$ of the subbundle $N^{n-m-p}$ has no multiple components.
@article{MZM_1977_22_4_a1,
     author = {A. V. Chakmazyan},
     title = {A~class of submanifolds in $V_c^n$ with parallel $p$-dimensional subbundle of the normal bundle},
     journal = {Matemati\v{c}eskie zametki},
     pages = {477--483},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a1/}
}
TY  - JOUR
AU  - A. V. Chakmazyan
TI  - A~class of submanifolds in $V_c^n$ with parallel $p$-dimensional subbundle of the normal bundle
JO  - Matematičeskie zametki
PY  - 1977
SP  - 477
EP  - 483
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a1/
LA  - ru
ID  - MZM_1977_22_4_a1
ER  - 
%0 Journal Article
%A A. V. Chakmazyan
%T A~class of submanifolds in $V_c^n$ with parallel $p$-dimensional subbundle of the normal bundle
%J Matematičeskie zametki
%D 1977
%P 477-483
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a1/
%G ru
%F MZM_1977_22_4_a1
A. V. Chakmazyan. A~class of submanifolds in $V_c^n$ with parallel $p$-dimensional subbundle of the normal bundle. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 477-483. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a1/