$K$-spaces of maximal rank
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 465-476
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a special type of $K$-space, i.e., almost-Hermitian manifolds whose fundamental form is a Killing form. The $K$-spaces of this type are characterized by the fact that their dimension is equal to the rank of the covariant derivative of the structure form. A number of the properties of such spaces are established (they are Einstein, compact, have finite fundamental group, etc.). It is proved that every $K$-space is locally equivalent to a product of a $K$-space of maximal rank and a Kähler manifold. The $K$-spaces with zero holomorphic sectional curvature are studied.
@article{MZM_1977_22_4_a0,
author = {V. F. Kirichenko},
title = {$K$-spaces of maximal rank},
journal = {Matemati\v{c}eskie zametki},
pages = {465--476},
year = {1977},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a0/}
}
V. F. Kirichenko. $K$-spaces of maximal rank. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 465-476. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a0/