$K$-spaces of maximal rank
Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 465-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special type of $K$-space, i.e., almost-Hermitian manifolds whose fundamental form is a Killing form. The $K$-spaces of this type are characterized by the fact that their dimension is equal to the rank of the covariant derivative of the structure form. A number of the properties of such spaces are established (they are Einstein, compact, have finite fundamental group, etc.). It is proved that every $K$-space is locally equivalent to a product of a $K$-space of maximal rank and a Kähler manifold. The $K$-spaces with zero holomorphic sectional curvature are studied.
@article{MZM_1977_22_4_a0,
     author = {V. F. Kirichenko},
     title = {$K$-spaces of maximal rank},
     journal = {Matemati\v{c}eskie zametki},
     pages = {465--476},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a0/}
}
TY  - JOUR
AU  - V. F. Kirichenko
TI  - $K$-spaces of maximal rank
JO  - Matematičeskie zametki
PY  - 1977
SP  - 465
EP  - 476
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a0/
LA  - ru
ID  - MZM_1977_22_4_a0
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%T $K$-spaces of maximal rank
%J Matematičeskie zametki
%D 1977
%P 465-476
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a0/
%G ru
%F MZM_1977_22_4_a0
V. F. Kirichenko. $K$-spaces of maximal rank. Matematičeskie zametki, Tome 22 (1977) no. 4, pp. 465-476. http://geodesic.mathdoc.fr/item/MZM_1977_22_4_a0/