Absolute upper semicontinuity
Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 395-399
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the following conditions are equivalent: the function $\varphi[a,b]\to R$ is absolutely upper semicontinuous (see [1]); $\varphi$ is a function of bounded variation with decreasing singular part; there exists a summable function $g:[a,b]\to R$ such that for any $t'\in[a,b]$ and $t''\in[t',b]$, we have $\varphi(t'')-\varphi(t')\le\int_{t'}^{t''}g(s)\,ds$.
@article{MZM_1977_22_3_a8,
author = {V. D. Ponomarev},
title = {Absolute upper semicontinuity},
journal = {Matemati\v{c}eskie zametki},
pages = {395--399},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a8/}
}
V. D. Ponomarev. Absolute upper semicontinuity. Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 395-399. http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a8/