Discrete imbedding theorems and Lebesgue constants
Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 381-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

The order of growth of the Lebesgue constant for a “hyperbolic cross” is found: $$ L_R=\int_{T^2}\Bigl|\sum_{0|\nu_1\nu_2|\le R_2}e^{2\pi i\nu x}\Bigr|\,dx\asymp R^{1.2},\quad R\to\infty. $$ Estimates are obtained by applying a discrete imbedding theorem. It is proved that among all convex domains in $E^2$, the square gives rise to a Lebesgue constant with the slowest growth $\ln^2R$.
@article{MZM_1977_22_3_a7,
     author = {A. A. Yudin and V. A. Yudin},
     title = {Discrete imbedding theorems and {Lebesgue} constants},
     journal = {Matemati\v{c}eskie zametki},
     pages = {381--394},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a7/}
}
TY  - JOUR
AU  - A. A. Yudin
AU  - V. A. Yudin
TI  - Discrete imbedding theorems and Lebesgue constants
JO  - Matematičeskie zametki
PY  - 1977
SP  - 381
EP  - 394
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a7/
LA  - ru
ID  - MZM_1977_22_3_a7
ER  - 
%0 Journal Article
%A A. A. Yudin
%A V. A. Yudin
%T Discrete imbedding theorems and Lebesgue constants
%J Matematičeskie zametki
%D 1977
%P 381-394
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a7/
%G ru
%F MZM_1977_22_3_a7
A. A. Yudin; V. A. Yudin. Discrete imbedding theorems and Lebesgue constants. Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 381-394. http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a7/