A method of approximation by rational functions on the real line
Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 375-380
Cet article a éte moissonné depuis la source Math-Net.Ru
For a given system of numbers $\{z_k\}_{k=1}^n$, $\operatorname{Im}z_k>0$, rational functions of order $4n-2$ are constructed which effect for a function $f(x)\in C_\infty$ an approximation of the same order as the best approximation by proper rational functions having poles at the points $\{z_k\}_{k=1}^n$ and $\{\overline z_k\}_{k=1}^n$.
@article{MZM_1977_22_3_a6,
author = {V. N. Rusak},
title = {A~method of approximation by rational functions on the real line},
journal = {Matemati\v{c}eskie zametki},
pages = {375--380},
year = {1977},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a6/}
}
V. N. Rusak. A method of approximation by rational functions on the real line. Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 375-380. http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a6/