Some extremal properties of positive trigonometric polynomials
Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 371-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $n=8$ an upper bound is given for the functional $$ V_n=\inf_{t_n}\frac{a_1+a_2+\dots+a_n}{(\sqrt{a_q}-\sqrt{a_0})^2}, $$ which is defined on the class of even, nonnegative, trigonometric polynomials $t_n(\varphi)=\sum_{k=0}^na_k\cos k\varphi$, such that $a_k\ge0$ ($k=0,\dots,n$), $a_1>a_0:V_8\le34,\!54461566$.
@article{MZM_1977_22_3_a5,
     author = {V. P. Kondrat'ev},
     title = {Some extremal properties of positive trigonometric polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {371--374},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a5/}
}
TY  - JOUR
AU  - V. P. Kondrat'ev
TI  - Some extremal properties of positive trigonometric polynomials
JO  - Matematičeskie zametki
PY  - 1977
SP  - 371
EP  - 374
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a5/
LA  - ru
ID  - MZM_1977_22_3_a5
ER  - 
%0 Journal Article
%A V. P. Kondrat'ev
%T Some extremal properties of positive trigonometric polynomials
%J Matematičeskie zametki
%D 1977
%P 371-374
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a5/
%G ru
%F MZM_1977_22_3_a5
V. P. Kondrat'ev. Some extremal properties of positive trigonometric polynomials. Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 371-374. http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a5/