Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1977_22_3_a4, author = {V. G. Doronin and A. A. Ligun}, title = {Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$}, journal = {Matemati\v{c}eskie zametki}, pages = {357--370}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {1977}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/} }
TY - JOUR AU - V. G. Doronin AU - A. A. Ligun TI - Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$ JO - Matematičeskie zametki PY - 1977 SP - 357 EP - 370 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/ LA - ru ID - MZM_1977_22_3_a4 ER -
%0 Journal Article %A V. G. Doronin %A A. A. Ligun %T Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$ %J Matematičeskie zametki %D 1977 %P 357-370 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/ %G ru %F MZM_1977_22_3_a4
V. G. Doronin; A. A. Ligun. Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$. Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 357-370. http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/