Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$
Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 357-370
Voir la notice de l'article provenant de la source Math-Net.Ru
The quantities $\sup\limits_{f\in W_\alpha^rV}\Hat{\Hat E}_n(f)_1$ ($r>-1$, $-\infty\alpha\infty$, $n=1,2\dots)$ are calculated, where $\Hat{\Hat E}_n(f)_1$ is the best approximation from above of the function $f$ by trigonometric polynomials of order $\le n-1$ in the metric of $L_1$.
@article{MZM_1977_22_3_a4,
author = {V. G. Doronin and A. A. Ligun},
title = {Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$},
journal = {Matemati\v{c}eskie zametki},
pages = {357--370},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/}
}
TY - JOUR AU - V. G. Doronin AU - A. A. Ligun TI - Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$ JO - Matematičeskie zametki PY - 1977 SP - 357 EP - 370 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/ LA - ru ID - MZM_1977_22_3_a4 ER -
%0 Journal Article %A V. G. Doronin %A A. A. Ligun %T Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$ %J Matematičeskie zametki %D 1977 %P 357-370 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/ %G ru %F MZM_1977_22_3_a4
V. G. Doronin; A. A. Ligun. Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$. Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 357-370. http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/