Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$
Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 357-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quantities $\sup\limits_{f\in W_\alpha^rV}\Hat{\Hat E}_n(f)_1$ ($r>-1$, $-\infty\alpha\infty$, $n=1,2\dots)$ are calculated, where $\Hat{\Hat E}_n(f)_1$ is the best approximation from above of the function $f$ by trigonometric polynomials of order $\le n-1$ in the metric of $L_1$.
@article{MZM_1977_22_3_a4,
     author = {V. G. Doronin and A. A. Ligun},
     title = {Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {357--370},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/}
}
TY  - JOUR
AU  - V. G. Doronin
AU  - A. A. Ligun
TI  - Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 357
EP  - 370
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/
LA  - ru
ID  - MZM_1977_22_3_a4
ER  - 
%0 Journal Article
%A V. G. Doronin
%A A. A. Ligun
%T Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$
%J Matematičeskie zametki
%D 1977
%P 357-370
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/
%G ru
%F MZM_1977_22_3_a4
V. G. Doronin; A. A. Ligun. Best-possible one-sided approximations in the classes $W_\alpha^rV$ ($r>-1$) by trigonometric polynomials in the metric of $L_1$. Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 357-370. http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a4/