Weak continuity of metric projections
Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 345-356
Cet article a éte moissonné depuis la source Math-Net.Ru
A necessary and sufficient condition is found for weak continuity of a metric projection onto a finite-dimensional subspace in $l_p$ ($1
). A metric projection onto a boundedly compact set in $l_p$ is sequentially weakly upper semicontinueus. An example is given on a convex, compact set in $l_2$ onto which the metric projection is not weakly continuous.
@article{MZM_1977_22_3_a3,
author = {V. S. Balaganskii},
title = {Weak continuity of metric projections},
journal = {Matemati\v{c}eskie zametki},
pages = {345--356},
year = {1977},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a3/}
}
V. S. Balaganskii. Weak continuity of metric projections. Matematičeskie zametki, Tome 22 (1977) no. 3, pp. 345-356. http://geodesic.mathdoc.fr/item/MZM_1977_22_3_a3/