A~weighted estimate of best approximations in $L_2(\Omega)$
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 245-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

The best approximation $\widetilde f$ [in the space $L_2(\Omega)$] of a function $f$, satisfying a Lipschitz condition with exponent $\alpha$, $0\le\alpha\le1$, with the aid of certain spaces of local functions, dependent on a parameter $h$, is discussed. We obtain the estimate $$ \|f-\widetilde f\|_\beta\le\widetilde C(f)h^{\min\{\alpha,\beta\}}, $$ where $$ \|u\|_\beta=\max_{x\in\overline\Omega}|r^\beta u(x)|,\quad\beta\ge0\quad u\in C(\overline\Omega) $$ and $r=r(x)$ is the distance of the point $x$ from the boundary of the domain $\Omega$.
@article{MZM_1977_22_2_a8,
     author = {Yu. K. Dem'yanovich},
     title = {A~weighted estimate of best approximations in $L_2(\Omega)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {245--255},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a8/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
TI  - A~weighted estimate of best approximations in $L_2(\Omega)$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 245
EP  - 255
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a8/
LA  - ru
ID  - MZM_1977_22_2_a8
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%T A~weighted estimate of best approximations in $L_2(\Omega)$
%J Matematičeskie zametki
%D 1977
%P 245-255
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a8/
%G ru
%F MZM_1977_22_2_a8
Yu. K. Dem'yanovich. A~weighted estimate of best approximations in $L_2(\Omega)$. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a8/