A weighted estimate of best approximations in $L_2(\Omega)$
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 245-255
Cet article a éte moissonné depuis la source Math-Net.Ru
The best approximation $\widetilde f$ [in the space $L_2(\Omega)$] of a function $f$, satisfying a Lipschitz condition with exponent $\alpha$, $0\le\alpha\le1$, with the aid of certain spaces of local functions, dependent on a parameter $h$, is discussed. We obtain the estimate $$ \|f-\widetilde f\|_\beta\le\widetilde C(f)h^{\min\{\alpha,\beta\}}, $$ where $$ \|u\|_\beta=\max_{x\in\overline\Omega}|r^\beta u(x)|,\quad\beta\ge0\quad u\in C(\overline\Omega) $$ and $r=r(x)$ is the distance of the point $x$ from the boundary of the domain $\Omega$.
@article{MZM_1977_22_2_a8,
author = {Yu. K. Dem'yanovich},
title = {A~weighted estimate of best approximations in $L_2(\Omega)$},
journal = {Matemati\v{c}eskie zametki},
pages = {245--255},
year = {1977},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a8/}
}
Yu. K. Dem'yanovich. A weighted estimate of best approximations in $L_2(\Omega)$. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a8/