Invariant subspaces and unicellularity of operators of generalized integration in spaces of analytic functionals
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 221-230
Voir la notice de l'article provenant de la source Math-Net.Ru
Invariant subspaces are described and the unicellularity is proved of one class of operators of generalized integration in spaces of analytic functionals. As one of the realizations it is established that every nontrivial subspace, invariant relative to the integration $\int_a^zF(t)\,dt$, in the space of functions analytic in an arbitrary convex domain $\Omega$ ($a\in\Omega$), is determined by a positive integer m and consists of all functions equal to zero at point $a$ together with all derivatives up to order $m-1$.
@article{MZM_1977_22_2_a6,
author = {V. A. Tkachenko},
title = {Invariant subspaces and unicellularity of operators of generalized integration in spaces of analytic functionals},
journal = {Matemati\v{c}eskie zametki},
pages = {221--230},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a6/}
}
TY - JOUR AU - V. A. Tkachenko TI - Invariant subspaces and unicellularity of operators of generalized integration in spaces of analytic functionals JO - Matematičeskie zametki PY - 1977 SP - 221 EP - 230 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a6/ LA - ru ID - MZM_1977_22_2_a6 ER -
V. A. Tkachenko. Invariant subspaces and unicellularity of operators of generalized integration in spaces of analytic functionals. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 221-230. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a6/