An asymptotic variant of the Fuglede–Putnam theorem on commutators for elements of Banach algebras
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 179-188
Cet article a éte moissonné depuis la source Math-Net.Ru
The Fuglede–Putnam theorem (in Moore's asymptotic form) on the commutators of normal operators of a Hilbert space is generalized, in particular, in the following form. Let $a_1,a_2,b_1$ and $b_2$ be the elements of a complex Banach algebra such that $[a_1,b_1]=[a_2,b_2]=0$ and $\|e^{\overline\lambda a_1-\lambda b_1}\|=o(|\lambda|^{1/2})$, $\|e^{\overline\lambda a_2-\lambda b_2}\|=o(|\lambda|^{1/2})$ as $\lambda\to\infty$. Then the inequality $\|b_1x-xb_2\|\le\varphi(\|a_1-xa_2\|)$, where $\varphi(\varepsilon)\to0$ as $\varepsilon\to0$, holds uniformly in every ball $\|x\|\le R<\infty$.
@article{MZM_1977_22_2_a2,
author = {E. A. Gorin and M. I. Karahanyan},
title = {An asymptotic variant of the {Fuglede{\textendash}Putnam} theorem on commutators for elements of {Banach} algebras},
journal = {Matemati\v{c}eskie zametki},
pages = {179--188},
year = {1977},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a2/}
}
TY - JOUR AU - E. A. Gorin AU - M. I. Karahanyan TI - An asymptotic variant of the Fuglede–Putnam theorem on commutators for elements of Banach algebras JO - Matematičeskie zametki PY - 1977 SP - 179 EP - 188 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a2/ LA - ru ID - MZM_1977_22_2_a2 ER -
E. A. Gorin; M. I. Karahanyan. An asymptotic variant of the Fuglede–Putnam theorem on commutators for elements of Banach algebras. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 179-188. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a2/