One functional equation with displacement in the space of continuous functions
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 303-311
Cet article a éte moissonné depuis la source Math-Net.Ru
In the space of continuous functions defined on a simple continuous contour, we examine the functional equation \begin{equation} a(t)\varphi(t)+b(t)\varphi[\alpha(t)]=g(t).\tag{1} \end{equation} A criterion for Eq. (1) being Noetherian is established under the condition that there exist a finite number of fixed points on the first multiplicity in the homeomorphism $\alpha(t)$ of the contour onto itself.
@article{MZM_1977_22_2_a14,
author = {V. G. Kravchenko},
title = {One functional equation with displacement in the space of continuous functions},
journal = {Matemati\v{c}eskie zametki},
pages = {303--311},
year = {1977},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a14/}
}
V. G. Kravchenko. One functional equation with displacement in the space of continuous functions. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 303-311. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a14/