Theorems on imbedding in anisotropic spaces of vector-valued functions
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 297-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

Imbedding theorems are proved for abstract anisotropic spaces of Sobolev type. In particular, it is proved that if $G$ is a bounded set satisfying the $l$ horn condition, then there holds the imbedding $$ D^\alpha W_2(G;H(A),H)\hookrightarrow L_2(G;H(A^1-|\alpha:l|)), $$ where $|\alpha:l|=\frac{\alpha_1}{l_2}+\dots+\frac{\alpha_n}{l_n}\le1$, $H$ is a Hilbert space, and $A$ is a self-adjoint positive operator.
@article{MZM_1977_22_2_a13,
     author = {S. Ya. Yakubov and V. B. Shakhmurov},
     title = {Theorems on imbedding in anisotropic spaces of vector-valued functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {297--301},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a13/}
}
TY  - JOUR
AU  - S. Ya. Yakubov
AU  - V. B. Shakhmurov
TI  - Theorems on imbedding in anisotropic spaces of vector-valued functions
JO  - Matematičeskie zametki
PY  - 1977
SP  - 297
EP  - 301
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a13/
LA  - ru
ID  - MZM_1977_22_2_a13
ER  - 
%0 Journal Article
%A S. Ya. Yakubov
%A V. B. Shakhmurov
%T Theorems on imbedding in anisotropic spaces of vector-valued functions
%J Matematičeskie zametki
%D 1977
%P 297-301
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a13/
%G ru
%F MZM_1977_22_2_a13
S. Ya. Yakubov; V. B. Shakhmurov. Theorems on imbedding in anisotropic spaces of vector-valued functions. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 297-301. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a13/