Completeness of analytic functions and extremality of the coefficients of a~Laurent series
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 277-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize Vitushkin's theorem on the fact that the completeness of the set of functions analytic on a compactum in the complex plane depends upon the extremality of the first coefficient of the Laurent series of the classes of functions connected with this compactum. We show that completeness is characterized by the extremality of the Laurent series coefficient with any fixed number $n$, $n\ge1$. The $n$-th analytic capacity considered, generalizing the concept of analytic capacity ($n=1$), also flexibly measures the set.
@article{MZM_1977_22_2_a11,
     author = {S. O. Sinanyan},
     title = {Completeness of analytic functions and extremality of the coefficients of {a~Laurent} series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {277--283},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a11/}
}
TY  - JOUR
AU  - S. O. Sinanyan
TI  - Completeness of analytic functions and extremality of the coefficients of a~Laurent series
JO  - Matematičeskie zametki
PY  - 1977
SP  - 277
EP  - 283
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a11/
LA  - ru
ID  - MZM_1977_22_2_a11
ER  - 
%0 Journal Article
%A S. O. Sinanyan
%T Completeness of analytic functions and extremality of the coefficients of a~Laurent series
%J Matematičeskie zametki
%D 1977
%P 277-283
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a11/
%G ru
%F MZM_1977_22_2_a11
S. O. Sinanyan. Completeness of analytic functions and extremality of the coefficients of a~Laurent series. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 277-283. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a11/