Absolute values of the coefficients of the polynomials in Weierstrass's approximation theorem
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 269-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem, bound up with Weierstrass's classical approximation theorem, is solved definitively: to determine the sequence of positive numbers $\{M_k\}$ such that, for any $f(z)\in C[0,1]$ and $\forall\,\varepsilon>0$ there exists the polynomial $P(z)=\sum_0^n\lambda_kz^k$ that $\|f-P\|\varepsilon$ and $|\lambda_k|\varepsilon M_k$, $k=1,\dots,n$.
@article{MZM_1977_22_2_a10,
     author = {O. A. Muradyan and S. Ya. Khavinson},
     title = {Absolute values of the coefficients of the polynomials in {Weierstrass's} approximation theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {269--276},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a10/}
}
TY  - JOUR
AU  - O. A. Muradyan
AU  - S. Ya. Khavinson
TI  - Absolute values of the coefficients of the polynomials in Weierstrass's approximation theorem
JO  - Matematičeskie zametki
PY  - 1977
SP  - 269
EP  - 276
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a10/
LA  - ru
ID  - MZM_1977_22_2_a10
ER  - 
%0 Journal Article
%A O. A. Muradyan
%A S. Ya. Khavinson
%T Absolute values of the coefficients of the polynomials in Weierstrass's approximation theorem
%J Matematičeskie zametki
%D 1977
%P 269-276
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a10/
%G ru
%F MZM_1977_22_2_a10
O. A. Muradyan; S. Ya. Khavinson. Absolute values of the coefficients of the polynomials in Weierstrass's approximation theorem. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 269-276. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a10/