The $C$-convexity of Banach spaces with unconditional bases
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 167-178
Cet article a éte moissonné depuis la source Math-Net.Ru
A Banach space is called $C$-convex if the space $c_0$ cannot be represented finitely in it. Necessary and sufficient conditions for the $C$-convexity of a space with an unconditional basis and of the product of a space $Y$ with respect to the unconditional basis of a space $X$ are obtained. These conditions are rendered concrete for two classes of spaces: The Orlich space of sequences is $C$-convex if and only if its normalizing function satisfies the $\Delta_2$-condition; the Lorentz space of sequences is $C$-convex if and only if its normalizing sequence satisfies the condition $\varliminf\limits_{n\to\infty}\sum_{i=1}^{2n}c_i\bigl/\sum_{i=1}^nc_i=1$.
@article{MZM_1977_22_2_a1,
author = {S. A. Rakov},
title = {The $C$-convexity of {Banach} spaces with unconditional bases},
journal = {Matemati\v{c}eskie zametki},
pages = {167--178},
year = {1977},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a1/}
}
S. A. Rakov. The $C$-convexity of Banach spaces with unconditional bases. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 167-178. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a1/