The $C$-convexity of Banach spaces with unconditional bases
Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 167-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Banach space is called $C$-convex if the space $c_0$ cannot be represented finitely in it. Necessary and sufficient conditions for the $C$-convexity of a space with an unconditional basis and of the product of a space $Y$ with respect to the unconditional basis of a space $X$ are obtained. These conditions are rendered concrete for two classes of spaces: The Orlich space of sequences is $C$-convex if and only if its normalizing function satisfies the $\Delta_2$-condition; the Lorentz space of sequences is $C$-convex if and only if its normalizing sequence satisfies the condition $\varliminf\limits_{n\to\infty}\sum_{i=1}^{2n}c_i\bigl/\sum_{i=1}^nc_i=1$.
@article{MZM_1977_22_2_a1,
     author = {S. A. Rakov},
     title = {The $C$-convexity of {Banach} spaces with unconditional bases},
     journal = {Matemati\v{c}eskie zametki},
     pages = {167--178},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a1/}
}
TY  - JOUR
AU  - S. A. Rakov
TI  - The $C$-convexity of Banach spaces with unconditional bases
JO  - Matematičeskie zametki
PY  - 1977
SP  - 167
EP  - 178
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a1/
LA  - ru
ID  - MZM_1977_22_2_a1
ER  - 
%0 Journal Article
%A S. A. Rakov
%T The $C$-convexity of Banach spaces with unconditional bases
%J Matematičeskie zametki
%D 1977
%P 167-178
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a1/
%G ru
%F MZM_1977_22_2_a1
S. A. Rakov. The $C$-convexity of Banach spaces with unconditional bases. Matematičeskie zametki, Tome 22 (1977) no. 2, pp. 167-178. http://geodesic.mathdoc.fr/item/MZM_1977_22_2_a1/