Trigonometric series with monotone coefficients
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 77-83
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{a_n\}$ be a monotonically decreasing sequence. Then each sequence $\{b_n\}$ such that $b_n\downarrow0$, $b_n\le a_n$, $n=1,2,\dots$, is a sequence of Fourier-Lebesgue coefficients with respect to the system $\{\cos nx\}$ if and only if the sequence $\sum_{n=1}^\infty\frac{a_n}n$ converges.
@article{MZM_1977_22_1_a8,
author = {L. A. Balashov},
title = {Trigonometric series with monotone coefficients},
journal = {Matemati\v{c}eskie zametki},
pages = {77--83},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a8/}
}
L. A. Balashov. Trigonometric series with monotone coefficients. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 77-83. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a8/