Description of $\pi$-partition of a~diffeomorphism with invariant measure
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 29-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a diffeomorphism of a smooth compact Riemann manifold, retaining a measure equivalent to Riemann volume, a special invariant partition is constructed on a set where at least one value of the characteristic Lyapunov indicators is nonzero. This partition possesses properties analogous to the properties of partition into global condensing sheets for Y-diffeomorphisms while, as the complement to this set, there is partition into points. It is proven that the measurable hull of this partition coincides with the $\pi$-partition of a diffeomorphism.
@article{MZM_1977_22_1_a3,
     author = {Ya. B. Pesin},
     title = {Description of $\pi$-partition of a~diffeomorphism with invariant measure},
     journal = {Matemati\v{c}eskie zametki},
     pages = {29--44},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a3/}
}
TY  - JOUR
AU  - Ya. B. Pesin
TI  - Description of $\pi$-partition of a~diffeomorphism with invariant measure
JO  - Matematičeskie zametki
PY  - 1977
SP  - 29
EP  - 44
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a3/
LA  - ru
ID  - MZM_1977_22_1_a3
ER  - 
%0 Journal Article
%A Ya. B. Pesin
%T Description of $\pi$-partition of a~diffeomorphism with invariant measure
%J Matematičeskie zametki
%D 1977
%P 29-44
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a3/
%G ru
%F MZM_1977_22_1_a3
Ya. B. Pesin. Description of $\pi$-partition of a~diffeomorphism with invariant measure. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 29-44. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a3/