Groups with a centralizer of sixth order
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 153-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite fusion-simple group with a self-centralizing subgroup $A$ of sixth order. It is proved that if the centralizer of the involution from $A$ is an unsolvable subgroup of $G$ of an odd index, then $G$ is isomorphic with the Janko group $J_1$.
@article{MZM_1977_22_1_a17,
     author = {A. A. Makhnev},
     title = {Groups with a centralizer of sixth order},
     journal = {Matemati\v{c}eskie zametki},
     pages = {153--159},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a17/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - Groups with a centralizer of sixth order
JO  - Matematičeskie zametki
PY  - 1977
SP  - 153
EP  - 159
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a17/
LA  - ru
ID  - MZM_1977_22_1_a17
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T Groups with a centralizer of sixth order
%J Matematičeskie zametki
%D 1977
%P 153-159
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a17/
%G ru
%F MZM_1977_22_1_a17
A. A. Makhnev. Groups with a centralizer of sixth order. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 153-159. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a17/