Groups with a centralizer of sixth order
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 153-159
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite fusion-simple group with a self-centralizing subgroup $A$ of sixth order. It is proved that if the centralizer of the involution from $A$ is an unsolvable subgroup of $G$ of an odd index, then $G$ is isomorphic with the Janko group $J_1$.
@article{MZM_1977_22_1_a17,
author = {A. A. Makhnev},
title = {Groups with a centralizer of sixth order},
journal = {Matemati\v{c}eskie zametki},
pages = {153--159},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a17/}
}
A. A. Makhnev. Groups with a centralizer of sixth order. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 153-159. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a17/