Another method for computing the densities of integrals of motion for the Korteweg--de Vries equation
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 129-135
Voir la notice de l'article provenant de la source Math-Net.Ru
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to $q$ of the functional $\int_0^\pi W(x,t,x;q)\,dx$ ($t$ is fixed) is computed, where $W(x,t,x;q)$ is the Riemann function of the problem
\begin{gather*}
\frac{\partial^2u}{\partial x^2}-q(x)u=\frac{\partial^2u}{\partial t^2}\quad(-\infty\infty),
\\
u|_{t=0}f=(x),\quad\frac{\partial u}{\partial t}\Bigr|_{t=0}=0.
\end{gather*}
@article{MZM_1977_22_1_a13,
author = {B. M. Levitan},
title = {Another method for computing the densities of integrals of motion for the {Korteweg--de} {Vries} equation},
journal = {Matemati\v{c}eskie zametki},
pages = {129--135},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a13/}
}
TY - JOUR AU - B. M. Levitan TI - Another method for computing the densities of integrals of motion for the Korteweg--de Vries equation JO - Matematičeskie zametki PY - 1977 SP - 129 EP - 135 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a13/ LA - ru ID - MZM_1977_22_1_a13 ER -
B. M. Levitan. Another method for computing the densities of integrals of motion for the Korteweg--de Vries equation. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 129-135. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a13/