Another method for computing the densities of integrals of motion for the Korteweg--de Vries equation
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 129-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to $q$ of the functional $\int_0^\pi W(x,t,x;q)\,dx$ ($t$ is fixed) is computed, where $W(x,t,x;q)$ is the Riemann function of the problem \begin{gather*} \frac{\partial^2u}{\partial x^2}-q(x)u=\frac{\partial^2u}{\partial t^2}\quad(-\infty\infty), \\ u|_{t=0}f=(x),\quad\frac{\partial u}{\partial t}\Bigr|_{t=0}=0. \end{gather*}
@article{MZM_1977_22_1_a13,
     author = {B. M. Levitan},
     title = {Another method for computing the densities of integrals of motion for the {Korteweg--de} {Vries} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--135},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a13/}
}
TY  - JOUR
AU  - B. M. Levitan
TI  - Another method for computing the densities of integrals of motion for the Korteweg--de Vries equation
JO  - Matematičeskie zametki
PY  - 1977
SP  - 129
EP  - 135
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a13/
LA  - ru
ID  - MZM_1977_22_1_a13
ER  - 
%0 Journal Article
%A B. M. Levitan
%T Another method for computing the densities of integrals of motion for the Korteweg--de Vries equation
%J Matematičeskie zametki
%D 1977
%P 129-135
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a13/
%G ru
%F MZM_1977_22_1_a13
B. M. Levitan. Another method for computing the densities of integrals of motion for the Korteweg--de Vries equation. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 129-135. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a13/