Another method for computing the densities of integrals of motion for the Korteweg–de Vries equation
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 129-135
Cet article a éte moissonné depuis la source Math-Net.Ru
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to $q$ of the functional $\int_0^\pi W(x,t,x;q)\,dx$ ($t$ is fixed) is computed, where $W(x,t,x;q)$ is the Riemann function of the problem \begin{gather*} \frac{\partial^2u}{\partial x^2}-q(x)u=\frac{\partial^2u}{\partial t^2}\quad(-\infty<x<\infty), \\ u|_{t=0}f=(x),\quad\frac{\partial u}{\partial t}\Bigr|_{t=0}=0. \end{gather*}
@article{MZM_1977_22_1_a13,
author = {B. M. Levitan},
title = {Another method for computing the densities of integrals of motion for the {Korteweg{\textendash}de} {Vries} equation},
journal = {Matemati\v{c}eskie zametki},
pages = {129--135},
year = {1977},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a13/}
}
B. M. Levitan. Another method for computing the densities of integrals of motion for the Korteweg–de Vries equation. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 129-135. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a13/