Generalized theorems of Li\'enard and Shepherd
Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 13-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a real polynomial $p(x)=a_0+a_1x+\dots+a_nx^n$ ($a_0>0$) for which there hold inequalities $\Delta_1>0, \Delta_3>0,\dots$ or $\Delta_2>0, \Delta_4>0$, where $\Delta_1,\Delta_2,\dots,\Delta_n$ are the Hurwitz determinants for polynomial $p(x)$. It is proven that polynomial $p(x)$ can have, in the right half-plane, only real roots, where the quantity of positive roots of polynomial $p(x)$ equals the quantity of changes of sign in the system of coefficients $a_0,a_2,\dots,a_n$, when $n$ is even, and $a_0,a_2,\dots,a_{n-1},a_n$, when $n$ is odd. From the proven theorem, in particular, there follows the Liénard and Shepherd criterion of stability.
@article{MZM_1977_22_1_a1,
     author = {G. F. Korsakov},
     title = {Generalized theorems of {Li\'enard} and {Shepherd}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {13--21},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a1/}
}
TY  - JOUR
AU  - G. F. Korsakov
TI  - Generalized theorems of Li\'enard and Shepherd
JO  - Matematičeskie zametki
PY  - 1977
SP  - 13
EP  - 21
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a1/
LA  - ru
ID  - MZM_1977_22_1_a1
ER  - 
%0 Journal Article
%A G. F. Korsakov
%T Generalized theorems of Li\'enard and Shepherd
%J Matematičeskie zametki
%D 1977
%P 13-21
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a1/
%G ru
%F MZM_1977_22_1_a1
G. F. Korsakov. Generalized theorems of Li\'enard and Shepherd. Matematičeskie zametki, Tome 22 (1977) no. 1, pp. 13-21. http://geodesic.mathdoc.fr/item/MZM_1977_22_1_a1/