The transfer of the Lyapunov integral criterion to two-dimensional periodic systems of second order
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 817-828
Cet article a éte moissonné depuis la source Math-Net.Ru
Two possibilities of the transfer of the Lyapunov integral criterion [1, p. 203] (see also [2; 3, p. 177]) $\omega\int_0^\omega(\tau)\,d\tau\le4$ for the boundedness of all the solutions of the scalar equation $\ddot x+a(t)x=0$ with nonnegative $\omega$-periodic function $a(t)$ to the two-dimensional systems $\ddot x=A(t)x$ with piecewise continuous $\omega$-periodic matrix coefficients are indicated.
@article{MZM_1977_21_6_a8,
author = {N. A. Izobov},
title = {The transfer of the {Lyapunov} integral criterion to two-dimensional periodic systems of second order},
journal = {Matemati\v{c}eskie zametki},
pages = {817--828},
year = {1977},
volume = {21},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a8/}
}
N. A. Izobov. The transfer of the Lyapunov integral criterion to two-dimensional periodic systems of second order. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 817-828. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a8/