The transfer of the Lyapunov integral criterion to two-dimensional periodic systems of second order
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 817-828.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two possibilities of the transfer of the Lyapunov integral criterion [1, p. 203] (see also [2; 3, p. 177]) $\omega\int_0^\omega(\tau)\,d\tau\le4$ for the boundedness of all the solutions of the scalar equation $\ddot x+a(t)x=0$ with nonnegative $\omega$-periodic function $a(t)$ to the two-dimensional systems $\ddot x=A(t)x$ with piecewise continuous $\omega$-periodic matrix coefficients are indicated.
@article{MZM_1977_21_6_a8,
     author = {N. A. Izobov},
     title = {The transfer of the {Lyapunov} integral criterion to two-dimensional periodic systems of second order},
     journal = {Matemati\v{c}eskie zametki},
     pages = {817--828},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a8/}
}
TY  - JOUR
AU  - N. A. Izobov
TI  - The transfer of the Lyapunov integral criterion to two-dimensional periodic systems of second order
JO  - Matematičeskie zametki
PY  - 1977
SP  - 817
EP  - 828
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a8/
LA  - ru
ID  - MZM_1977_21_6_a8
ER  - 
%0 Journal Article
%A N. A. Izobov
%T The transfer of the Lyapunov integral criterion to two-dimensional periodic systems of second order
%J Matematičeskie zametki
%D 1977
%P 817-828
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a8/
%G ru
%F MZM_1977_21_6_a8
N. A. Izobov. The transfer of the Lyapunov integral criterion to two-dimensional periodic systems of second order. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 817-828. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a8/