Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 769-776 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The complete asymptotic developments in powers of $1/n$ are derived for quantities characterizing approximation by singular integrals of de la Vallée Poussin \begin{gather*} V_n(f;x)=\frac1{\Delta_n}\int_{-\pi}^\pi f(x+t)\cos^{2n}\frac t2\,dt; \\ \Delta_n=\int_{-\pi}^\pi\cos^{2n}\frac t2\,dt \end{gather*} of the function classes $\operatorname{Lip}\alpha$, $0<\alpha\le1$, $W^{(r)}$, $r\ge1$ an integer.
@article{MZM_1977_21_6_a3,
     author = {V. A. Baskakov},
     title = {Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la {Vall\'ee} {Poussin}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {769--776},
     year = {1977},
     volume = {21},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a3/}
}
TY  - JOUR
AU  - V. A. Baskakov
TI  - Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin
JO  - Matematičeskie zametki
PY  - 1977
SP  - 769
EP  - 776
VL  - 21
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a3/
LA  - ru
ID  - MZM_1977_21_6_a3
ER  - 
%0 Journal Article
%A V. A. Baskakov
%T Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin
%J Matematičeskie zametki
%D 1977
%P 769-776
%V 21
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a3/
%G ru
%F MZM_1977_21_6_a3
V. A. Baskakov. Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 769-776. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a3/