Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin
Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 769-776
Cet article a éte moissonné depuis la source Math-Net.Ru
The complete asymptotic developments in powers of $1/n$ are derived for quantities characterizing approximation by singular integrals of de la Vallée Poussin \begin{gather*} V_n(f;x)=\frac1{\Delta_n}\int_{-\pi}^\pi f(x+t)\cos^{2n}\frac t2\,dt; \\ \Delta_n=\int_{-\pi}^\pi\cos^{2n}\frac t2\,dt \end{gather*} of the function classes $\operatorname{Lip}\alpha$, $0<\alpha\le1$, $W^{(r)}$, $r\ge1$ an integer.
@article{MZM_1977_21_6_a3,
author = {V. A. Baskakov},
title = {Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la {Vall\'ee} {Poussin}},
journal = {Matemati\v{c}eskie zametki},
pages = {769--776},
year = {1977},
volume = {21},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a3/}
}
TY - JOUR AU - V. A. Baskakov TI - Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin JO - Matematičeskie zametki PY - 1977 SP - 769 EP - 776 VL - 21 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a3/ LA - ru ID - MZM_1977_21_6_a3 ER -
%0 Journal Article %A V. A. Baskakov %T Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin %J Matematičeskie zametki %D 1977 %P 769-776 %V 21 %N 6 %U http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a3/ %G ru %F MZM_1977_21_6_a3
V. A. Baskakov. Asymptotics of the approximation of continuous and differentiable functions by the singular integrals of de la Vallée Poussin. Matematičeskie zametki, Tome 21 (1977) no. 6, pp. 769-776. http://geodesic.mathdoc.fr/item/MZM_1977_21_6_a3/