Fundamental functions vanishing on a~given set and division by functions
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 677-689.

Voir la notice de l'article provenant de la source Math-Net.Ru

The space $\Psi_V$ of fundamental functions (a subspace of S) consisting of functions vanishing together with all their derivatives on a given closed set $V\subset R^n$ is constructed. Multipliers in $\Psi_V$ are described. In the space $\Psi_V$ is easily realized the division of unity by an infinitely differentiable function, “vanishing slowly” for approximation to its zero set, (in particular, by a polynomial). In the case of a cone $V$ in $R^n$, a description of the dual space $\Phi_V$ consisting of the Fourier preimages of functions of $\Psi_V$ is given. The problem of multipliers in $\Phi_V$ is discussed.
@article{MZM_1977_21_5_a9,
     author = {S. G. Samko},
     title = {Fundamental functions vanishing on a~given set and division by functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {677--689},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a9/}
}
TY  - JOUR
AU  - S. G. Samko
TI  - Fundamental functions vanishing on a~given set and division by functions
JO  - Matematičeskie zametki
PY  - 1977
SP  - 677
EP  - 689
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a9/
LA  - ru
ID  - MZM_1977_21_5_a9
ER  - 
%0 Journal Article
%A S. G. Samko
%T Fundamental functions vanishing on a~given set and division by functions
%J Matematičeskie zametki
%D 1977
%P 677-689
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a9/
%G ru
%F MZM_1977_21_5_a9
S. G. Samko. Fundamental functions vanishing on a~given set and division by functions. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 677-689. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a9/