Some estimates of differentiable functions
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 653-664
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $x(t)\in C_{[a,b]}^{(n)}$ and has $n$ zeros at the points $a$ and $b$. It is shown that if $x^{(n)}(t)$ preserves sign on $[a,b]$, then
$$
|x(t)|\ge\frac{p_0}{(n-1)}\Bigl[\sup\limits_{\tau\in(a,b)}\frac{|x(\tau)|}{(\tau-a)^{p-1}(b-\tau)^{q-1}}\Bigr](t-a)^p(b-t)^q\quad(a),
$$
where $p$ and $q$ are the multiplicities of the zeros of $x(t)$ at $a$ and $b$, respectively, and $p_0=\min\{p,q\}$. Two-sided estimates of the Green's function for a two-point interpolation problem for the operator $Lx\equiv x^{(n)}$ are established in the proof. As an application, new conditions for the solvability of de la Vallée Poussin's two-point boundary problems are obtained.
@article{MZM_1977_21_5_a7,
author = {Yu. V. Pokornyi},
title = {Some estimates of differentiable functions},
journal = {Matemati\v{c}eskie zametki},
pages = {653--664},
publisher = {mathdoc},
volume = {21},
number = {5},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a7/}
}
Yu. V. Pokornyi. Some estimates of differentiable functions. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 653-664. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a7/