Theorem on a convergence condition in the spaces
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 615-626
Cet article a éte moissonné depuis la source Math-Net.Ru
For a given $\varphi$-function $\varphi(u)$, a condition on a $\varphi$-function $\psi(u)$ is found such that it is necessary and sufficient for the following to hold: $f_n(x)\to f(x)$ and $\|f_n(x)\|_\psi\le M$ ($1,2,\dots$) where $M>0$ is an absolute constant, then $\|f_n(x)-f(x)\|_\varphi\to0$ ($n\to\infty$). An analogous condition for convergence in Orlicz spaces is obtained as a corollary.
@article{MZM_1977_21_5_a4,
author = {S. V. Lapin},
title = {Theorem on a~convergence condition in the spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {615--626},
year = {1977},
volume = {21},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a4/}
}
S. V. Lapin. Theorem on a convergence condition in the spaces. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 615-626. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a4/