$T$-maps connected with Hartree's equation
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 605-614.

Voir la notice de l'article provenant de la source Math-Net.Ru

The singular potential in Hartree's equation is replaced by a converging almost-everywhere sequence of bounded functions. The solutions of the corresponding equations which are nonlinear equations of Hartree type are represented in the form of $T$-maps. The concept of a $T$-map was introduced earlier by Maslov. The strong convergence of a sequence of $T$-maps on a set dense in $L_2(R^3)$ is proved by the method of analytic continuation.
@article{MZM_1977_21_5_a3,
     author = {A. M. Chebotarev},
     title = {$T$-maps connected with {Hartree's} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {605--614},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a3/}
}
TY  - JOUR
AU  - A. M. Chebotarev
TI  - $T$-maps connected with Hartree's equation
JO  - Matematičeskie zametki
PY  - 1977
SP  - 605
EP  - 614
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a3/
LA  - ru
ID  - MZM_1977_21_5_a3
ER  - 
%0 Journal Article
%A A. M. Chebotarev
%T $T$-maps connected with Hartree's equation
%J Matematičeskie zametki
%D 1977
%P 605-614
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a3/
%G ru
%F MZM_1977_21_5_a3
A. M. Chebotarev. $T$-maps connected with Hartree's equation. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 605-614. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a3/