A conditional limit theorem for a critical Branching process with immigration
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 727-736
Cet article a éte moissonné depuis la source Math-Net.Ru
The life period of a branching process with immigration begins at the moment $T$ and has length $\tau$ if the number of particles $\mu(T-0)=0$, $\mu(t)>0$ for all $T\le t, $\mu(T+\tau)=0$ (the trajectories of the process are assumed to be continuous from the right). For a critical Markov branching process is obtained a limit theorem on the behavior of $\mu(t)$ under the condition that $\tau>t$ and $T=0$.
@article{MZM_1977_21_5_a13,
author = {V. A. Vatutin},
title = {A~conditional limit theorem for a~critical {Branching} process with immigration},
journal = {Matemati\v{c}eskie zametki},
pages = {727--736},
year = {1977},
volume = {21},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a13/}
}
V. A. Vatutin. A conditional limit theorem for a critical Branching process with immigration. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 727-736. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a13/