A~conditional limit theorem for a~critical Branching process with immigration
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 727-736.

Voir la notice de l'article provenant de la source Math-Net.Ru

The life period of a branching process with immigration begins at the moment $T$ and has length $\tau$ if the number of particles $\mu(T-0)=0$, $\mu(t)>0$ for all $T\le t$, $\mu(T+\tau)=0$ (the trajectories of the process are assumed to be continuous from the right). For a critical Markov branching process is obtained a limit theorem on the behavior of $\mu(t)$ under the condition that $\tau>t$ and $T=0$.
@article{MZM_1977_21_5_a13,
     author = {V. A. Vatutin},
     title = {A~conditional limit theorem for a~critical {Branching} process with immigration},
     journal = {Matemati\v{c}eskie zametki},
     pages = {727--736},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a13/}
}
TY  - JOUR
AU  - V. A. Vatutin
TI  - A~conditional limit theorem for a~critical Branching process with immigration
JO  - Matematičeskie zametki
PY  - 1977
SP  - 727
EP  - 736
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a13/
LA  - ru
ID  - MZM_1977_21_5_a13
ER  - 
%0 Journal Article
%A V. A. Vatutin
%T A~conditional limit theorem for a~critical Branching process with immigration
%J Matematičeskie zametki
%D 1977
%P 727-736
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a13/
%G ru
%F MZM_1977_21_5_a13
V. A. Vatutin. A~conditional limit theorem for a~critical Branching process with immigration. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 727-736. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a13/