The arithmetic of the characteristic P\'olya functions
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 717-725.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the theory of D. Kendall's delphic semigroups are considered problems of divisibility in the semigroup pgr of convex characteristic functions on the semiaxis $(0,\infty)$. $N(\pi)=\{\varphi\in\pi:\varphi_1\mid\varphi\Rightarrow\varphi_1\equiv1\text{ or }\varphi_1=\varphi\}$ and $I_0(\pi)=\{\varphi\in\pi:\varphi_1\mid\varphi\Rightarrow\varphi_1\notin N(\pi)\}$. The following results are proved: 1) The semigroup pgr is almost delphic in the sense of R. Davidson. 2) $N(\pi)$ is a set of the type $G_\delta$ which is dense in $\pi$ (in the topology of uniform convergence on compacta). 3) The class $I_0(\pi)$ contains only the function identically equal to one.
@article{MZM_1977_21_5_a12,
     author = {A. I. Il'inskii},
     title = {The arithmetic of the characteristic {P\'olya} functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {717--725},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a12/}
}
TY  - JOUR
AU  - A. I. Il'inskii
TI  - The arithmetic of the characteristic P\'olya functions
JO  - Matematičeskie zametki
PY  - 1977
SP  - 717
EP  - 725
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a12/
LA  - ru
ID  - MZM_1977_21_5_a12
ER  - 
%0 Journal Article
%A A. I. Il'inskii
%T The arithmetic of the characteristic P\'olya functions
%J Matematičeskie zametki
%D 1977
%P 717-725
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a12/
%G ru
%F MZM_1977_21_5_a12
A. I. Il'inskii. The arithmetic of the characteristic P\'olya functions. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 717-725. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a12/