A~recursive method of construction of resolvable $BIB$-designs
Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 707-715.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved that every resolvable $BIB$-design $(v,k,\lambda)$ with $\lambda=k-1$ and the parameters $v$ and $k$ such that there exists a set of $k-1$ pairwise orthogonal Latin squares of order $v$ can be embedded in a resolvable $BIB$-design $(k+1)v,k,k-1)$. An analogous theorem is established for the class of arbitrary $BIB$-designs. As a consequence is deduced the existence of resolvable $BIB$-designs $(v,k,\lambda)$ with $\lambda=k-1$ and $(v,k,\lambda)$ with $\lambda=(k-1)/2$
@article{MZM_1977_21_5_a11,
     author = {B. T. Rumov},
     title = {A~recursive method of construction of resolvable $BIB$-designs},
     journal = {Matemati\v{c}eskie zametki},
     pages = {707--715},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a11/}
}
TY  - JOUR
AU  - B. T. Rumov
TI  - A~recursive method of construction of resolvable $BIB$-designs
JO  - Matematičeskie zametki
PY  - 1977
SP  - 707
EP  - 715
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a11/
LA  - ru
ID  - MZM_1977_21_5_a11
ER  - 
%0 Journal Article
%A B. T. Rumov
%T A~recursive method of construction of resolvable $BIB$-designs
%J Matematičeskie zametki
%D 1977
%P 707-715
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a11/
%G ru
%F MZM_1977_21_5_a11
B. T. Rumov. A~recursive method of construction of resolvable $BIB$-designs. Matematičeskie zametki, Tome 21 (1977) no. 5, pp. 707-715. http://geodesic.mathdoc.fr/item/MZM_1977_21_5_a11/