The membership of solutions of quasielliptic equations to space $L_p$
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 519-524.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that the solutions of a quasielliptic equation, belonging to space $L_1$ with weight equal to a negative power of the distance to the flat part of the boundary, belong to space $L_p$ with some $p>1$. In particular, the positive solutions of uniformly elliptic equations in bounded regions $\Omega$ with a smooth boundary belong to $L_p(\Omega)$ with any $p$, where $n$ is the dimension of the space of independent variables.
@article{MZM_1977_21_4_a8,
     author = {V. A. Kondrat'ev and S. D. \`Eidel'man},
     title = {The membership of solutions of quasielliptic equations to space $L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--524},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a8/}
}
TY  - JOUR
AU  - V. A. Kondrat'ev
AU  - S. D. Èidel'man
TI  - The membership of solutions of quasielliptic equations to space $L_p$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 519
EP  - 524
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a8/
LA  - ru
ID  - MZM_1977_21_4_a8
ER  - 
%0 Journal Article
%A V. A. Kondrat'ev
%A S. D. Èidel'man
%T The membership of solutions of quasielliptic equations to space $L_p$
%J Matematičeskie zametki
%D 1977
%P 519-524
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a8/
%G ru
%F MZM_1977_21_4_a8
V. A. Kondrat'ev; S. D. Èidel'man. The membership of solutions of quasielliptic equations to space $L_p$. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 519-524. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a8/