The membership of solutions of quasielliptic equations to space $L_p$
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 519-524
Cet article a éte moissonné depuis la source Math-Net.Ru
It is established that the solutions of a quasielliptic equation, belonging to space $L_1$ with weight equal to a negative power of the distance to the flat part of the boundary, belong to space $L_p$ with some $p>1$. In particular, the positive solutions of uniformly elliptic equations in bounded regions $\Omega$ with a smooth boundary belong to $L_p(\Omega)$ with any $p, where $n$ is the dimension of the space of independent variables.
@article{MZM_1977_21_4_a8,
author = {V. A. Kondrat'ev and S. D. \`Eidel'man},
title = {The membership of solutions of quasielliptic equations to space $L_p$},
journal = {Matemati\v{c}eskie zametki},
pages = {519--524},
year = {1977},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a8/}
}
V. A. Kondrat'ev; S. D. Èidel'man. The membership of solutions of quasielliptic equations to space $L_p$. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 519-524. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a8/