The norm in $C$ of orthogonal projections onto subspaces of polygonal functions
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 495-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P_\pi$ be an orthogonal projection (in the sense of $L_2$) onto the subspace of polygonal functions over a certain partition $\pi$ of the segment $[0,1]$. Z. Ciesielski has established the following estimate for the norm of this operators, as acting from $C$ into $C$, valid for an arbitrary partition: $\|P_\pi\|_{C\to C}\le3$. In this note it is proved that this estimate is final; more precisely, it is shown that $\sup\limits_\pi\|P_\pi\|_{C\to C}=3$.
@article{MZM_1977_21_4_a5,
     author = {P. Oswald},
     title = {The norm in $C$ of orthogonal projections onto subspaces of polygonal functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {495--502},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a5/}
}
TY  - JOUR
AU  - P. Oswald
TI  - The norm in $C$ of orthogonal projections onto subspaces of polygonal functions
JO  - Matematičeskie zametki
PY  - 1977
SP  - 495
EP  - 502
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a5/
LA  - ru
ID  - MZM_1977_21_4_a5
ER  - 
%0 Journal Article
%A P. Oswald
%T The norm in $C$ of orthogonal projections onto subspaces of polygonal functions
%J Matematičeskie zametki
%D 1977
%P 495-502
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a5/
%G ru
%F MZM_1977_21_4_a5
P. Oswald. The norm in $C$ of orthogonal projections onto subspaces of polygonal functions. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 495-502. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a5/