The norm in $C$ of orthogonal projections onto subspaces of polygonal functions
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 495-502
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P_\pi$ be an orthogonal projection (in the sense of $L_2$) onto the subspace of polygonal functions over a certain partition $\pi$ of the segment $[0,1]$. Z. Ciesielski has established the following estimate for the norm of this operators, as acting from $C$ into $C$, valid for an arbitrary partition: $\|P_\pi\|_{C\to C}\le3$. In this note it is proved that this estimate is final; more precisely, it is shown that $\sup\limits_\pi\|P_\pi\|_{C\to C}=3$.
@article{MZM_1977_21_4_a5,
author = {P. Oswald},
title = {The norm in $C$ of orthogonal projections onto subspaces of polygonal functions},
journal = {Matemati\v{c}eskie zametki},
pages = {495--502},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a5/}
}
P. Oswald. The norm in $C$ of orthogonal projections onto subspaces of polygonal functions. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 495-502. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a5/