Functor $D$ and strong homotopy
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 557-564
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper studies functor $D$ and strong homotopy, introduced earlier by the author [1]. A theorem is proven on mappings, and the connection is established between the concepts of strong homotopy of DGA-mapping of coalgebras and functor $D$. As topological applications, in particular, it is shown that continuous mappings of the sphere $f,g:S^{2n-1}\to S^n$ have one and the same Hopf invariant if and only if the induced chain of mappings is strongly homotopic.
@article{MZM_1977_21_4_a13,
author = {V. A. Smirnov},
title = {Functor $D$ and strong homotopy},
journal = {Matemati\v{c}eskie zametki},
pages = {557--564},
year = {1977},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a13/}
}
V. A. Smirnov. Functor $D$ and strong homotopy. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 557-564. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a13/