Nonaxiomatizability of lattice-orderable rings
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 449-452
Cet article a éte moissonné depuis la source Math-Net.Ru
Two elementarily equivalent rings, one of which is lattice-orderable and the other is not lattice-orderable, are constructed. Hence follows the elementary non closedness and the nonaxiomatizability of the class of all lattice-orderable rings. This example shows that the class of all lattice-orderable rings is nonaxiomatizable in the class of directedly orderable rings.
@article{MZM_1977_21_4_a0,
author = {A. A. Vinogradov},
title = {Nonaxiomatizability of lattice-orderable rings},
journal = {Matemati\v{c}eskie zametki},
pages = {449--452},
year = {1977},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a0/}
}
A. A. Vinogradov. Nonaxiomatizability of lattice-orderable rings. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 449-452. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a0/