Nonaxiomatizability of lattice-orderable rings
Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 449-452.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two elementarily equivalent rings, one of which is lattice-orderable and the other is not lattice-orderable, are constructed. Hence follows the elementary non closedness and the nonaxiomatizability of the class of all lattice-orderable rings. This example shows that the class of all lattice-orderable rings is nonaxiomatizable in the class of directedly orderable rings.
@article{MZM_1977_21_4_a0,
     author = {A. A. Vinogradov},
     title = {Nonaxiomatizability of lattice-orderable rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {449--452},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a0/}
}
TY  - JOUR
AU  - A. A. Vinogradov
TI  - Nonaxiomatizability of lattice-orderable rings
JO  - Matematičeskie zametki
PY  - 1977
SP  - 449
EP  - 452
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a0/
LA  - ru
ID  - MZM_1977_21_4_a0
ER  - 
%0 Journal Article
%A A. A. Vinogradov
%T Nonaxiomatizability of lattice-orderable rings
%J Matematičeskie zametki
%D 1977
%P 449-452
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a0/
%G ru
%F MZM_1977_21_4_a0
A. A. Vinogradov. Nonaxiomatizability of lattice-orderable rings. Matematičeskie zametki, Tome 21 (1977) no. 4, pp. 449-452. http://geodesic.mathdoc.fr/item/MZM_1977_21_4_a0/