Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a complex parameter
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 377-390
Cet article a éte moissonné depuis la source Math-Net.Ru
Maslov's canonical operator method is used for constructing the asymptotic behavior with respect to a complex parameter of the fundamental solution of a secondorder elliptic equation with smooth finite coefficients. The asymptotic form is constructed on the assumption that all trajectories of the corresponding Hamiltonian system depart to infinity. The asymptotic form is used for investigating the analytic properties of the fundamental solution.
@article{MZM_1977_21_3_a9,
author = {T. M. Gataullin},
title = {Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a~complex parameter},
journal = {Matemati\v{c}eskie zametki},
pages = {377--390},
year = {1977},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a9/}
}
TY - JOUR AU - T. M. Gataullin TI - Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a complex parameter JO - Matematičeskie zametki PY - 1977 SP - 377 EP - 390 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a9/ LA - ru ID - MZM_1977_21_3_a9 ER -
T. M. Gataullin. Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a complex parameter. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 377-390. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a9/