Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a~complex parameter
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 377-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

Maslov's canonical operator method is used for constructing the asymptotic behavior with respect to a complex parameter of the fundamental solution of a secondorder elliptic equation with smooth finite coefficients. The asymptotic form is constructed on the assumption that all trajectories of the corresponding Hamiltonian system depart to infinity. The asymptotic form is used for investigating the analytic properties of the fundamental solution.
@article{MZM_1977_21_3_a9,
     author = {T. M. Gataullin},
     title = {Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a~complex parameter},
     journal = {Matemati\v{c}eskie zametki},
     pages = {377--390},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a9/}
}
TY  - JOUR
AU  - T. M. Gataullin
TI  - Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a~complex parameter
JO  - Matematičeskie zametki
PY  - 1977
SP  - 377
EP  - 390
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a9/
LA  - ru
ID  - MZM_1977_21_3_a9
ER  - 
%0 Journal Article
%A T. M. Gataullin
%T Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a~complex parameter
%J Matematičeskie zametki
%D 1977
%P 377-390
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a9/
%G ru
%F MZM_1977_21_3_a9
T. M. Gataullin. Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a~complex parameter. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 377-390. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a9/