A~lower bound for the error of a~formula for approximate summation in the class $E_{s,p}(C)$
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 371-375
Voir la notice de l'article provenant de la source Math-Net.Ru
The error of a formula for approximate summation in the class $E_{s,p}(C)$ over an arbitrary mesh containing p base-points is shown to be not less than $C_1\ln^sp/p$. This estimate has the same order as the error of the optimal parallelepiped mesh in this class.
@article{MZM_1977_21_3_a8,
author = {I. F. Sharygin},
title = {A~lower bound for the error of a~formula for approximate summation in the class $E_{s,p}(C)$},
journal = {Matemati\v{c}eskie zametki},
pages = {371--375},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a8/}
}
TY - JOUR
AU - I. F. Sharygin
TI - A~lower bound for the error of a~formula for approximate summation in the class $E_{s,p}(C)$
JO - Matematičeskie zametki
PY - 1977
SP - 371
EP - 375
VL - 21
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a8/
LA - ru
ID - MZM_1977_21_3_a8
ER -
I. F. Sharygin. A~lower bound for the error of a~formula for approximate summation in the class $E_{s,p}(C)$. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 371-375. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a8/