A~lower bound for the error of a~formula for approximate summation in the class $E_{s,p}(C)$
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 371-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

The error of a formula for approximate summation in the class $E_{s,p}(C)$ over an arbitrary mesh containing p base-points is shown to be not less than $C_1\ln^sp/p$. This estimate has the same order as the error of the optimal parallelepiped mesh in this class.
@article{MZM_1977_21_3_a8,
     author = {I. F. Sharygin},
     title = {A~lower bound for the error of a~formula for approximate summation in the class $E_{s,p}(C)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {371--375},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a8/}
}
TY  - JOUR
AU  - I. F. Sharygin
TI  - A~lower bound for the error of a~formula for approximate summation in the class $E_{s,p}(C)$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 371
EP  - 375
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a8/
LA  - ru
ID  - MZM_1977_21_3_a8
ER  - 
%0 Journal Article
%A I. F. Sharygin
%T A~lower bound for the error of a~formula for approximate summation in the class $E_{s,p}(C)$
%J Matematičeskie zametki
%D 1977
%P 371-375
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a8/
%G ru
%F MZM_1977_21_3_a8
I. F. Sharygin. A~lower bound for the error of a~formula for approximate summation in the class $E_{s,p}(C)$. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 371-375. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a8/