Approximation by Riesz sums of periodic functions of Hölder classes
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 341-354 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We have found asymptotic equalities for the least upper bounds of the deviations of Riesz sums on the Hölder classes $W^rH_\omega$, $r$ is a nonnegative integer, $\omega(t)$ is an arbitrary convex modulus of continuity.
@article{MZM_1977_21_3_a6,
     author = {A. I. Stepanets},
     title = {Approximation by {Riesz} sums of periodic functions of {H\"older} classes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {341--354},
     year = {1977},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a6/}
}
TY  - JOUR
AU  - A. I. Stepanets
TI  - Approximation by Riesz sums of periodic functions of Hölder classes
JO  - Matematičeskie zametki
PY  - 1977
SP  - 341
EP  - 354
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a6/
LA  - ru
ID  - MZM_1977_21_3_a6
ER  - 
%0 Journal Article
%A A. I. Stepanets
%T Approximation by Riesz sums of periodic functions of Hölder classes
%J Matematičeskie zametki
%D 1977
%P 341-354
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a6/
%G ru
%F MZM_1977_21_3_a6
A. I. Stepanets. Approximation by Riesz sums of periodic functions of Hölder classes. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 341-354. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a6/