Approximation by Riesz sums of periodic functions of H\"older classes
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 341-354
Voir la notice de l'article provenant de la source Math-Net.Ru
We have found asymptotic equalities for the least upper bounds of the deviations of Riesz sums on the Hölder classes $W^rH_\omega$, $r$ is a nonnegative integer, $\omega(t)$ is an arbitrary convex modulus of continuity.
@article{MZM_1977_21_3_a6,
author = {A. I. Stepanets},
title = {Approximation by {Riesz} sums of periodic functions of {H\"older} classes},
journal = {Matemati\v{c}eskie zametki},
pages = {341--354},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a6/}
}
A. I. Stepanets. Approximation by Riesz sums of periodic functions of H\"older classes. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 341-354. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a6/