The $h$-measure of $M$-sets for a~Walsh system
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 335-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any nondecreasing function $h(t)$, given on the positive semiaxis and tending to zero as $t\to0$, we construct an example of a perfect $M$-set for a Walsh system, having a zero $h$-measure.
@article{MZM_1977_21_3_a5,
     author = {V. A. Skvortsov},
     title = {The $h$-measure of $M$-sets for {a~Walsh} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {335--340},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a5/}
}
TY  - JOUR
AU  - V. A. Skvortsov
TI  - The $h$-measure of $M$-sets for a~Walsh system
JO  - Matematičeskie zametki
PY  - 1977
SP  - 335
EP  - 340
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a5/
LA  - ru
ID  - MZM_1977_21_3_a5
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%T The $h$-measure of $M$-sets for a~Walsh system
%J Matematičeskie zametki
%D 1977
%P 335-340
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a5/
%G ru
%F MZM_1977_21_3_a5
V. A. Skvortsov. The $h$-measure of $M$-sets for a~Walsh system. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 335-340. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a5/