Mapping of $n$-connected region onto a plane with cuts along the arcs of logarithmic spirals
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 329-334
Cet article a éte moissonné depuis la source Math-Net.Ru
A univalent function is constructed that effects a conformal mapping of an $n$-connected circular region onto the entire plane with finite cuts along the arcs of logarithmic spirals. An approximate formula is obtained for this function, as well as the corresponding error.
@article{MZM_1977_21_3_a4,
author = {L. O. Dunduchenko and S. V. Goncharenko},
title = {Mapping of $n$-connected region onto a~plane with cuts along the arcs of logarithmic spirals},
journal = {Matemati\v{c}eskie zametki},
pages = {329--334},
year = {1977},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a4/}
}
TY - JOUR AU - L. O. Dunduchenko AU - S. V. Goncharenko TI - Mapping of $n$-connected region onto a plane with cuts along the arcs of logarithmic spirals JO - Matematičeskie zametki PY - 1977 SP - 329 EP - 334 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a4/ LA - ru ID - MZM_1977_21_3_a4 ER -
L. O. Dunduchenko; S. V. Goncharenko. Mapping of $n$-connected region onto a plane with cuts along the arcs of logarithmic spirals. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 329-334. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a4/