Attainability property and ergodicity theorems for a semi-Markov process with an arbitrary set of states
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 301-312
Cet article a éte moissonné depuis la source Math-Net.Ru
The connection is studied which exists between the finiteness of the average time to achieve certain subsets, on the one hand, and, on the other, the ergodic properties of the process. The assertions proven in this paper generalize results obtained for semi-Markov processes with discrete sets of states. Moreover, the connection is studied between the asymptotic time to achieve a set whose “dimensions” tend to zero and, on the other hand, the ergodicity of the process.
@article{MZM_1977_21_3_a2,
author = {A. P. Cherenkov},
title = {Attainability property and ergodicity theorems for {a~semi-Markov} process with an arbitrary set of states},
journal = {Matemati\v{c}eskie zametki},
pages = {301--312},
year = {1977},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a2/}
}
TY - JOUR AU - A. P. Cherenkov TI - Attainability property and ergodicity theorems for a semi-Markov process with an arbitrary set of states JO - Matematičeskie zametki PY - 1977 SP - 301 EP - 312 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a2/ LA - ru ID - MZM_1977_21_3_a2 ER -
A. P. Cherenkov. Attainability property and ergodicity theorems for a semi-Markov process with an arbitrary set of states. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 301-312. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a2/