Some topological and geometrical problems arising in projective-difference methods for the triangulation of a domain
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 427-442
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the problem of the partition of a polygon $\Omega$ into quadrilaterals (quadrangles and triangles) is studied, for which four given boundary points $A_i(1\le i\le4)$ become the vertices of a quadrilateral, and the partition itself is topologically equivalent to a special partition of a rectangle $Q$ into rectangles with sides parallel to the sides of $Q$. This problem is closely connected with the problem of choosing a basis of piecewise linear functions in the projective-difference method, for which the projective-difference analog of the operator $-\Delta\equiv-(\partial^2/\partial x^2+\partial^2/\partial y^2)$ for a boundary-value problem in $\Omega$ turns out to be spectrally equivalent to its simplest difference analog in a rectangle (see [1–5]).
@article{MZM_1977_21_3_a14,
author = {E. G. D'yakonov},
title = {Some topological and geometrical problems arising in projective-difference methods for the triangulation of a~domain},
journal = {Matemati\v{c}eskie zametki},
pages = {427--442},
year = {1977},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a14/}
}
TY - JOUR AU - E. G. D'yakonov TI - Some topological and geometrical problems arising in projective-difference methods for the triangulation of a domain JO - Matematičeskie zametki PY - 1977 SP - 427 EP - 442 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a14/ LA - ru ID - MZM_1977_21_3_a14 ER -
E. G. D'yakonov. Some topological and geometrical problems arising in projective-difference methods for the triangulation of a domain. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 427-442. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a14/