Singular integral operators along a~complex contour
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 409-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some sufficient conditions under which a singular operator with bounded measurable coefficients is a $\Phi$-operator in the space $L_2(\Gamma)$ are established. If the contour of integration is a closed Lyapunov contour, then these conditions coincide with the well-known conditions of Simonenko and are also necessary for the operator under consideration to be Noetherian.
@article{MZM_1977_21_3_a12,
     author = {V. I. Nyaga},
     title = {Singular integral operators along a~complex contour},
     journal = {Matemati\v{c}eskie zametki},
     pages = {409--414},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a12/}
}
TY  - JOUR
AU  - V. I. Nyaga
TI  - Singular integral operators along a~complex contour
JO  - Matematičeskie zametki
PY  - 1977
SP  - 409
EP  - 414
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a12/
LA  - ru
ID  - MZM_1977_21_3_a12
ER  - 
%0 Journal Article
%A V. I. Nyaga
%T Singular integral operators along a~complex contour
%J Matematičeskie zametki
%D 1977
%P 409-414
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a12/
%G ru
%F MZM_1977_21_3_a12
V. I. Nyaga. Singular integral operators along a~complex contour. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 409-414. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a12/