Singular integral operators along a complex contour
Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 409-414
Cet article a éte moissonné depuis la source Math-Net.Ru
Some sufficient conditions under which a singular operator with bounded measurable coefficients is a $\Phi$-operator in the space $L_2(\Gamma)$ are established. If the contour of integration is a closed Lyapunov contour, then these conditions coincide with the well-known conditions of Simonenko and are also necessary for the operator under consideration to be Noetherian.
@article{MZM_1977_21_3_a12,
author = {V. I. Nyaga},
title = {Singular integral operators along a~complex contour},
journal = {Matemati\v{c}eskie zametki},
pages = {409--414},
year = {1977},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a12/}
}
V. I. Nyaga. Singular integral operators along a complex contour. Matematičeskie zametki, Tome 21 (1977) no. 3, pp. 409-414. http://geodesic.mathdoc.fr/item/MZM_1977_21_3_a12/